Toxic Mechanisms of Aryloxyphenoxypropionates in Target and Non-target Organisms

Main Article Content

Ayokanmi Ore
Ebenezer Tunde Olayinka

Abstract

Herbicides are substances used to control unwanted plants-weeds. They can be classified into several classes by mechanism of action. This review describes the members of aryloxyphenoxypropionate herbicides, their pharmacokinetic properties, metabolism and their mechanism of phytotoxicity in target weeds as well as in non-target organisms. Two major toxicity mechanisms are described. The first is by inhibition of lipid synthesis. This is achieved by inhibiting the rate limiting step of lipid biosynthesis catalyzed by acetyl CoA carboxylase. The second mechanism is by induction of oxidative stress. This is achieved by generation of reactive oxygen species which in excess can cause oxidative damage to macromolecules and cellular structures especially the membrane lipids. Loss of vital membrane lipids alters the fluidity of membrane, loss of cellular contents and eventually cell death and death of the entire plant.

Keywords:
Herbicides, Aryloxyphenoxypropionates, toxicity mechanisms, acetyl CoA carboxylase, oxidative stress

Article Details

How to Cite
Ore, A., & Olayinka, E. (2019). Toxic Mechanisms of Aryloxyphenoxypropionates in Target and Non-target Organisms. International Journal of Biochemistry Research & Review, 27(1), 1-11. https://doi.org/10.9734/ijbcrr/2019/v27i130109
Section
Review Article

References

Andrew H. Cobb, John PH. Reade herbicides and plant physiology 2nd Ed. John Wiley & Sons; 2011.
ISBN 9781444322491

Hamid AA, Aiyelaagbe OO, Balogun GA. Herbicides and its applications. Advances in Natural and Applied Sciences. 2011; 5(2):201-213.
Alan wood, compendium of pesticide common names: Herbicides [Internet]; 2018.
Available:http://www.alanwood.net/pesticides/class_herbicides.html [Accessed: 2018-07-11]

Laganà A. Herbicides (New generation): Imidazolinones, Aryloxyphenoxypropionic acids/esters and diphenylethers, 'Analysis of Pesticides'. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. 2006;1-40.
DOI: 10.1002/9780470027318.a1711

Hamada SHE, Abdel-Lateef MF, Abdelmonem AE, El-Kholy RMA, Helalia AAR. Efficiency of certain clodinafop-propargyl formulations in controlling annual grassy weeds in wheat. Annals of Agricultural Science. 2013;58(1):13–18.
DOI: 10.1016/j.aoas.2013.01.003

Magani EI, Shave PA, Avav T. Evaluation of fluazifop-p-butyl and propanil for weed control in sesame (Sesamum indicum L.) in Southern Guinea Savanna Nigeria. Am. J. Exp. Agric. 2012;2(4):680–689.

Buehring NW, Talbert RE, Baldwin FL. Rice (Oryza sativa) response and annual grass control with graminicides. Weed Technol. 2006;2:738-744.
DOI: 10.1614/WT-05-153R.1.

Lancaster ZD, Norsworthy JK, Scott RC. Evaluation of Quizalofop-Resistant Rice for Arkansas Rice Production Systems. International Journal of Agronomy; 2018. Article ID 6315865: 1-8.
DOI: 10.1155/2018/6315865

Nandula VK, Vencill WK. Herbicide Absorption and Translocation in Plants using Radioisotopes. Weed Science. 2015; 63:Special Issue:140–151.
DOI: 10.1614/WS-D-13-00107.1

Carr JE, Davies LG, Cobb AH, Pallett KE. Uptake, translocation and metabolism of fluazifop‐butyl in Setaria viridis. Ann. Appl. Biol. 1986;108:15-23.
DOI:10.1111/j.1744-7348.1986.tb01972.x

Balinova AM, Lalova MP. Translocation, metabolism and residues of fluazifop‐butyl in soybean plants. Weed Research. 1992; 32:143-147.
DOI: 10.1111/j.1365-3180.1992.tb01872.x

Ruiz-Santaella JP, Heredia A, De Prado R. Basis of selectivity of cyhalofop-butyl in Oryza sativa L. Planta. 2006;223:191–199.
DOI 10.1007/s00425-005-0075-1.

Aguero‐Alvarado R, Appleby AP. Uptake, translocation and phytotoxicity of root‐absorbed haloxyfop in soybean, Festuca rubra L. and Festuca arundinacea Schreb. Weed Research 1991;31:257-263. DOI: 10.1111/j.1365-3180.1991.tb01765.x

Liang Y, Wang P, Liu D, Shen Z, Liu H, Jia Z, Zhou Z. Enantioselective metabolism of quizalofop-ethyl in rat. PLoS One. 2014 25;9(6):e101052.
DOI: 10.1371/journal.pone.0101052.

Evaluation of the new active Cyhalofop-butyl in the product barnstorm herbicide. National registration authority for agricultural and veterinary chemicals Australian Pesticides and Veterinary Medicines Authority. 2005;1-48.
[ISSN1443-1335]

Walker KA, Ridley SM, Lewis T, Harwood JL. Fluazifop a grass-selective herbicide which inhibits acetyl-coa carboxylase in sensitive plant species. Biochemical Journal. 1988;254(1):307–310.
DOI: 10.1042/bj2551064

Ore A, Olayinka ET Fluazifop-p-butyl, an Aryloxyphenoxypropionate herbicide, diminishes renal and hepatic functions and triggers testicular oxidative stress in orally exposed rats. Toxicol Ind Health. 2017; 33(5):406-415.
DOI: 10.1177/0748233716657763.

Clark NW, Scott RC, Blain PG, Williams FM. Fate of fluazifop butyl in rat and human skin in vitro. Arch Toxicol. 1993;67(1):44-48.
DOI: 10.1007/BF02072034

Woollen BH, Hart TB, Batten PL, Laird WJ, Davies DS, Dollery CT. Oral pharmacokinetics of fluazifop-butyl in human volunteers. Hum Exp Toxicol. 1991; 10(1):39-43.
DOI: 10.1177/096032719101000107

Ramsey JD, Woollen BH, Auton TR, Batten PL, Leeser JE. Pharmacokinetics of fluazifop-butyl in human volunteers. II: Dermal dosing. Hum Exp Toxicol. 1992; 11(4):247-54.
DOI: 10.1177/096032719201100402

Secor J, Cseke C, Owen WJ. The discovery of selective inhibition of acetyl-coenzyme a carboxylase activity by two classes of graminicides. Brighton Crop Prot. Conf. Weeds. 1989;3B-1, 145.

Rendina AR, Craig-Kennard AC, Beaudoin JD Breen MK. Inhibition of acetyl-coenzyme a carboxylase by two classes of grass-selective herbicides. J. Agric. Food Chem. 1990;38:1282.
DOI: 10.1021/jf00095a029

Incledon BJ, Hall CJ. Acetyl-Coenzyme A carboxylase: Quaternary structure and inhibition by graminicidal herbicides. Pesticide Biochemistry and Physiology. 1997;57:255–271.
DOI:10.1006/pest.1997.2279

Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase: Structure, biosynthesis, regulation and gene manipulation for plant breeding. Biosci. Biotechnol. Biochem. 2004;68(6):1175–1184.
DOI: 10.1271/bbb.68.1175

Heldt H. Plant biochemistry. 3rd Edn. Burlington, Elsevier Academic Press, USA; 2005.

Lichtenthaler HK. Mode of action of herbicides affecting Acetyl- CoA carboxylase and fatty acid biosynthesis. Biosciences. 2014;45(5): 521–528.
DOI: 10.1515/znc-1990-0538

Hoppe HH, Zacher H, Inhibition of fatty acid biosynthesis in isolated bean andmaize chloroplasts by herbicidal phenoxy-phenoxypropionic acid derivatives and structurally related compounds. Pestic. Biochem Physiol. 1985;24:298-305.
DOI: 10.1016/0048-3575(85)90140-3

Halliwell B. Biochemistry of oxidative stress. Biochemical Society Transactions. 2007;35(5):1147-1150. D
DOI: 10.1042/BST0351147

Dat J, Vandenabeele S, Vranov E, Van Montagu M, Inze D, Van Breusegem F. Dual action of the active oxygen species during plant stress responses, Cell. Mol. Life Sci. 2000;57:779–795.
DOI: 10.1007/s000180050041

Waszczak C, Carmody M, Kangasjarvi J. Reactive Oxygen Species in Plant Signaling. Annual Review of Plant Biology. 2018;69:209-236.
DOI:10.1146/annurev-arplant-042817-040322

Demidchik V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ. Exp. Bot. 2014, 109:212-228.
DOI: 10.1016/j.envexpbot.2014.06.021

Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. 2012; 217037:1-26.
DOI: 10.1155/2012/217037

Roychoudhury A, Dasand K. Reactive Oxygen Species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science: Environmental Toxicology. 2014;2(53):1-13.
DOI: 10.3389/fenvs.2014.00053

Lukatkin AS, Gar’kova AN, Bochkarjova AS, Nushtaeva OV, Teixeira da Silva AJ Treatment with the herbicide TOPIK induces oxidative stress in cereal leaves. Pesticide Biochemistry and Physiology. 2013;105:44–49.
DOI: 10.1016/j.pestbp.2012.11.006

Zhang Q, Zhao M, Qian H, Lu, T, Zhang Q, Liu W. Enantioselective damage of diclofop acid mediated by oxidative stress and Acetyl-CoA carboxylase in nontarget plant Arabidopsis thaliana. Environ. Sci. Technol. 2012;46:8405−8412.
DOI: 10.1021/es300049q

Ding H, Lu H, Lavoie M, Xie J, Li Y, Lv X, Fu Z, Qian H. Unraveling the toxicity mechanisms of the herbicide diclofop-methyl in rice: Modulation of the activity of key enzymes involved in citrate metabolism and induction of cell membrane anion channels. Journal of Agricultural and Food Chemistry. 2014, 62(44):10654-10660.
DOI: 0.1021/jf503974t

Shimabukuro RH, Davis DG, Hoffer BL. The effect of diclofop-methyl and its antagonist, vitamin E, on membrane lipids in oat (Avena sativa L.) and leafy spurge (Euphorbia esula L.). Pestic. Biochem. Physiol. 2001;69:13−26.

Edwards R, Cole DJ, Glutathione transferases in wheat (Triticum) species with activity toward fenoxaprop-ethyl and other herbicides. Pestic Biochem Physiol. 1996;54:96–104.

Carvea M, Coggana TL, Myersb JH, Clarkea B, Nugegodaa D, Shimeta J. Impacts on the seagrass, Zostera nigricaulis from the herbicide Fusilade Forte® used in the management of Spartina anglica infestations. Aquatic Toxicology. 2018;195:15–23.
DOI:10.1016/j.aquatox.2017.11.021

Luo X, Sunohara Y, Matsumoto H. Fluazifop-butyl causes membrane peroxidation in the herbicide-susceptible broad leaf weed bristly starbur (Acanthospermum hispidum). Pesticide Biochemistry and Physiology. 2004;78: 93–102.DOI:10.1016/j.pestbp.2003.10.002

Luo X, Liu, Z, Sunohara, Y, Matsumoto H, Li P. Involvement of H2O2 in Fluazifop-p-butyl-induced cell death in bristly starbur seedlings. Pestic Biochem Physiol. 2017;143:258-264.
DOI: 10.1016/j.pestbp.2016.12.007

Liu Z, Li P, Sun X, Zhou F, Yang C, Li L, Matsumoto , Luo X. Fluazifop-P-butyl induced ROS generation with IAA (indole-3-acetic acid) oxidation in Acanthospermum hispidum D.C. Pestic Biochem Physiol. 2017;143:312-318.
DOI: 10.1016/j.pestbp.2017.10.005

Xin W, Erhua R, Jinhua Z, Xiangyang Z, Yinyuan W, Pingyi G. Effect of quizalofop on protective enzymes and photosynthesis in Radix Isatidis. Journal of Medicinal Plants Research 2012;6(9):1770-1776.
DOI: 10.5897/JMPR11.1612

Doganlar ZB. Quizalofop-p-ethyl-induced phytotoxicity and genotoxicity in Lemna minor and Lemna gibba. Journal of Environmental Science and Health, Part A. 2012;47:1631–1643.
DOI: 10.1080/10934529.2012.687175

Tong L. Acetyl-coenzyme a carboxylase: Crucial metabolic enzyme and attractive target for drug discovery. Cell and Molecular Biology. 2005;62(16):1784–1803.
DOI: 10.1007/s00018-005-5121-4

Kemal C, Casida JE. Coenzyme a esters of 2-Aryloxyphenoxypropionate herbicides and 2-Arylpropionate anti-inflammatory drugs are potent and stereoselective inhibitors of rat liver Acetyl-CoA Carboxylase. Life Science. 1992;50(7): 533-540.

Yea J, Zhang Y, Chen S, Liu C, Zhu Y, Liu W, Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid. Aquatic Toxicology. 2014;146:12–19.
DOI: 10.1016/j.aquatox.2013.10.023

Olayinka ET, Ore A. Hepatotoxicity, nephrotoxicity and oxidative stress in rat testis following exposure to haloxyfop-p-methyl ester, an Aryloxyphenoxypropionate herbicide. Toxics. 2015;3:373-389.
DOI: 10.3390/toxics3040373.

Abd-Alrahman SH, Elhalwagy MEA, Kotb GA, Farid H, Farag AAG, Draz HM, Isa AM, Sabico S. Exposure to difenoconazole, diclofop-methyl alone and combination alters oxidative stress and biochemical parameters in albino rats. Int J Clin Exp Med. 2014;7(10):3637-3646.

Du Y, Ye1 J, Wu L, Yang C, Wang L, Hu X. Physiological effects and toxin release in Microcystis aeruginosa and Microcystis viridis exposed to herbicide fenoxaprop-p-ethyl. Environ Sci Pollut Res. 2017;24: 7752–7763.
DOI: 10.1007/s11356-017-8474-y.